Answering Questions with AddBiomechanics Data ================================================ You can use the AddBiomechanics data to answer questions about the biomechanics of the human body. Here are a few worked examples, to spark your imagination. Plotting histograms of joint torques ###################################################################### If you are designing an exoskeleton, you might want to understand the biological torque levels at each joint. Here is a simple example to get you started:: import nimblephysics as nimble import argparse from typing import List import numpy as np import time import os import matplotlib.pyplot as plt import pandas as pd def main(b3d_file_path: str): # Load the B3D file subjects: List[nimble.biomechanics.SubjectOnDisk] = [] paths = [] if os.path.isdir(b3d_file_path): for dirpath, dirnames, filenames in os.walk(b3d_file_path): for file in filenames: if file.endswith('.b3d'): path = os.path.join(b3d_file_path, file) print(f'Loading {path}') paths.append(file) subjects.append(nimble.biomechanics.SubjectOnDisk(path)) else: assert(b3d_file_path.endswith('.b3d')) print(f'Loading {os.path.join(b3d_file_path)}') subjects.append(nimble.biomechanics.SubjectOnDisk(b3d_file_path)) print('Reading first skeleton') skel = subjects[0].readSkel(subjects[0].getNumProcessingPasses()-1, ignoreGeometry=True) dof_names = [] for i in range(skel.getNumDofs()): dof_names.append(skel.getDofByIndex(i).getName()) print(dof_names) left_hip = dof_names.index('hip_flexion_l') # positive moves leg forwards, negative moves leg backwards left_hip_torques = [] for s, subject in enumerate(subjects): print(f'Processing {s+1}/{len(subjects)}') trials = subject.getNumTrials() for trial in range(trials): length = subject.getTrialLength(trial) passes = subject.getTrialNumProcessingPasses(trial) frames = subject.readFrames(trial, 0, length, includeSensorData=True, includeProcessingPasses=True) for t in range(len(frames)): frame: nimble.biomechanics.Frame = frames[t] if frame.missingGRFReason != nimble.biomechanics.MissingGRFReason.notMissingGRF: continue pos = frame.processingPasses[passes-1].pos taus = frame.processingPasses[passes-1].tau if np.abs(taus[left_hip]) < 500.0: left_hip_torques.append(taus[left_hip]) left_hip_torques = np.array(left_hip_torques) # Plot a histogram of the torques plt.hist(left_hip_torques, bins=100, label='Left Hip Torques') plt.title('Lef Hip Flexion Torques') plt.show() if __name__ == "__main__": # Create the parser parser = argparse.ArgumentParser(description='This loads a set of B3D files, and works out the human + exo torques ' 'involved in simulating the desired virtual body. It can then compute ' 'parameters for a series-elastic-actuator (SEA) to achieve the ' 'desired torque. It can also simulate the SEA, and plot the results') # Add an argument parser.add_argument('--b3d_file_path', default='../../training_data/train', type=str, help='Path to the b3d file to load, or directory of B3Ds to load') # Parse the arguments args = parser.parse_args() main(os.path.abspath(args.b3d_file_path)) The above script will load a set of B3D files, and plot a histogram of the torques at the left hip joint. .. image:: _static/figures/Hip_flexion_tau.png :width: 500